30x+x^2+40+10x+35=180

Simple and best practice solution for 30x+x^2+40+10x+35=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 30x+x^2+40+10x+35=180 equation:



30x+x^2+40+10x+35=180
We move all terms to the left:
30x+x^2+40+10x+35-(180)=0
We add all the numbers together, and all the variables
x^2+40x-105=0
a = 1; b = 40; c = -105;
Δ = b2-4ac
Δ = 402-4·1·(-105)
Δ = 2020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2020}=\sqrt{4*505}=\sqrt{4}*\sqrt{505}=2\sqrt{505}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{505}}{2*1}=\frac{-40-2\sqrt{505}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{505}}{2*1}=\frac{-40+2\sqrt{505}}{2} $

See similar equations:

| 20x-22=2 | | 7x+3—2x=20+8 | | 36(x+9)=0 | | 4+7r=4 | | 9-7y+3=-2 | | x+8.6=-5.4 | | x-4/3+6x=2/5 | | x+1+30x=63 | | -x^2-9x+11=x | | 380/1710=532/x | | (3x+7)+(8x+8)=180 | | −5x+3=-5x+3 | | (3x+7)=(8x+8) | | -1=(20/9)v | | 30-16n=-6(12n+1)-20 | | 2m–13=5*(1+4m) | | 10/15=4/x+5 | | 32=9+z | | 75+5b+10=180 | | 250/p=1050/60 | | -1=20v/9 | | 2x^2-13x+14=0 | | 105+10c-5=180 | | 4=b-44/8 | | 9(3x+1)-4x-7=2(5x+6)+13(x+2) | | 2b+13=5 | | v=3.14(102)(9) | | 105+2a-5=180 | | 90=h/8+85 | | 5(3)^x=25 | | r/2-9=1 | | 178=-2xx= |

Equations solver categories